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The problem of convection in a vertical layer with harmonically distorted 
boundaries is examined by perturbation theory methods for a small arnp~~de 
of sinuosity. The solutions obtained are applicable both in the stability region 
as well as in the supercritical region of the plane-parallel flow. The stability 
of the solutions found is investigated with respect to a certain class of space- 
bounded perturbations that are not necessarily space-periodic. The method of 

amplitude functions [l], generalized to the case of curved boundaries, is used. 
The Grashof critical number is found as a function of the period of sinuosity 
and the form of the neutral curve for the space-periodic motions and their 
stability region are obtained. It is established that if the deformation period 
of the boundaries is close to the wavelength of the critical perturbation for the 
plane-parallel flow or is twice as great, then as the Grashof number grows 
stability loss does not occur and the motion’s amplitude changes continuously 

(Cf. [Z- 41). A comparison is made with the results of the numerical calcula- 
tion in [5], An attempt was made in [6] to construct a stationary periodic 
motion in a layer with weakly-deformed boundaries, in the form of series in 

powers of a small sinuosity amplitude. However, the solution obtained diverg- 

es in a neighborhood of the neutral curve of the plane-parallel flow and approx- 
imates unstable motion in the supercritical region of the unperturbed problem. 
Flows under a finite sinuosity amplitude are calculated by the net method in 

[5] wherein the stability of the flows was investigated as well, but only with 
respect to perturbations with wave numbers that are multiples of k/l, where 
I is the length of the calculated region. 

I, We examine the planar motion of a liquid in an infinite vertical layer on whose 

rigid boundaries 

x = *td (1 - Tl eon k,y i d) 

different constant temperatures T = r 8 are maintained, We write the system 
of convection equations in dimensionless variables as 

( (10 1) 

1080 
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A =xF 
af ag af ag @ ++?_*=-____ 
ax ay ay ax 

Here 9 is the stream function, r is the temperature, P is the prandtlmmber, and 
G is the Grashof number determined from the mean halfwidth d of the layer and 

half the temperature difference @. The boundary conditions are 

s-.*(1-?Jcosk&), T-%1, ~=c%#,&x=O (1.2) 

y+f=, 191<oo* 1Tl-C~ (1.3) 

In what follows the parameter q is assumed small. 

2. At first we construct the stationary solutions of system (1.1) -( 1.3), satisfying 
the periodicity condition 

u (s, Y + 2n / k,) = U (r, Y) (2.1) 

We introduce a coordinate transformation rectifying the layer’s curvilinear boundaries 

Y? = Y, 2’ = 2 I (l - 7 cos ksy) (2.2) 

In the new variables the boundary conditions are specified on the flat boundaries 

x’ = fl, 9 = 8q I 8x’ = 0, T = yl (2.3) 

while the convection Eqs. (1.1) become inhomogeneous and acquire the form 

LU++(U,U) = tqn 2 (A&If (2.4) 

n=1 m=--n 

+- Bm,, (U, U)) e*mkog’ 

A-m,% = Arnns B-m,n = Bma 

(henceforth the primes will be omitted for impurity). The indices m and n are 
of like parity. 

When q = 0 problem (2.3) and (2.4) possesses, for any G , a solution corres- 

ponding to plane-parallel motion 

$,, = - -$ (1 - x2)21 To = - iz (2.5) 

For moderate values of the Prandtl number (being precisely the case to be analyzed 

subsequently) the solution given becomes unstable with respect to monotonically grow- 
ing perturbations of period 2s~ lk : when exceeding the threshold value of the Grashof 

number Go (k); the neutral curve GO (k) has a minimum G = G, for some 

k = k,. stationary solutions, periodic in y I exist in the region G > G,, in 

addition to solution (2.5) [7]_ 
For small %J # 0 we seek the solution of problem (2.3) and (2.4) as a power 

series in 3, choosing solution (2.5) as the zero approximation 
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u *= ,g -TfYP), U(O) = (qYo, To) 
?L=O (2.6) 

Substituting expansion (2.6) into (2.3) and (2.4), in each order with respect to 11 we 
obtain an inhomogeneous boundary problem for the determination of Utn) 

n-1 

hU(n) + D (u(o), UC”)) = - f c D (U(P), UC-P)) + (2.7) 

pr=l 
12 1 n-l 

&?zl( 

A,,&('+" + + 
c 

B,, (U(P), UP-h)) x e(mkou 

5 =E *-;T g(n) = d+(n) / i$Zi T(n) = 0 (2.8) 
y+f~, )g@)l<m, ) T(n) 1 < cm 

The indices m and n in (2.7) are of like parity. The boundary-value problem( 2.7) 
and (2.8) is solvable for any right hand side if 

G # Go (nko), n > 1 (2.9) 
According to the linear stability theory of a plane-parallel flow, other branches of the 
neutral curve, lying considerable higher with respect to the Grashof number and con- 
nected with thermal waves [S] and the Tollmien - Schlichting waves [9], correspond 
to running perturbations with nonzero frequency. For this reason their existence does 
not impose additional constraints on the solvability of problem (2.7). 

In general, problem (2.7) and (2.8) has no solutions on curve G = G,(nk,) , 
and as G approaches Go (nk,) the function IW)I-+oo. This circumstance, 

established numerically in [6], is due to the fact that when G = Go (nk,) the 

boundary-value problem (2.7) and (2.8) has a nontrivial solution when the right hand 
side of the eqution is zero. The divergence of function ucn) attests to the ill-posed- 
ness of expansion (2.6) in powers of y close to the neutral curve, where the distortion 
in the motion’s plane-parallelism takes place not only because of the sinuosity of the 

boundaries but also as a result of the crisis in flow (2.5). Thus, in the region G 2 
Go the amplitude of the nonplane-parallel component of the motion is E >q, 
and as 9 3 0 the solution desired must pass not into a plane-parallel one but into 
a secondary flow in a layer with flat boundaries. However, if the noncriticality of 

G - Go (nk,) and the magnitude of rl are small, then amplitude 8 must besmall. 
I,n this case the solution can also be constructed with the aid of expansions with respect 

to a small parameter as which we should choose not TJ but a. 
We restrict the analysis to the cases G zz Go (k,) and G x Go @k,). Let 

G lie in a neighborhood of Go (k,). Henceforth we assume G - Go = 0 (E2) 
and we introduce the notation 

G _ Go = asG@) (2.10) 

We seek a stationary periodic solution of problem (2.3) and (2.4) in the form 

u _ rJ(o) = $j anU(N, U(O) = (90, To) (2.11) 
VI==1 

We represent the connection between the quantities a, q and G as 
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(2.12) 

Substituting (2.10) - (2.12) into (2,4) and (2.3), in the n -th order of e we obtain 
a boundary-value problem from whose solvability condition (orthogonality of the 
equation’s right hand side to the solution of the adjoint problem) we find the coeffic- 
ient T-l@‘. When n = 1 we obtain an equation whose solvability condition yields 
q(l) X 0, and the solution has the form 

~(1) = uU,(i) ($) &*ev + gu_,(U (2) i+*ag 

The subscript corresponds to the number of the harmonic eimk@, The complex co- 
efficient a whose magnitude depends upon the norming of function uifi) has to be 
determined in the subsequent orders. 

Analogously, from the solvability condition for the equations in the second order 
we obtain +) = 0, while in the third order the connection between r)(a) and a 
is 

JG@)a - s 1 a pz + DTp’ = 0 (2.13) 
Be-cause they are cumbersome we do not derive the explicit expressions for the coeffic- 
ients J, S and D which are scalar products of the inhomogeneous right hand sides 

of the equations and the solution of the adjoint linear problem. To find the functions 
ui(l), u,(*f and v,@) occurring in these expressions we used the Runge - Kutta 

method. Let us present the numerical values of the coefficients for P = 1, ke = 
kc = 1.38, and norming Re @!!f = - 1 , where r.+(r) = (~pl(i), $r(rf) : J = 
0.059, S = 2797, D = 18.8. 

Multiplying (2.13) by ~~ and denoting a, = &a, we obtain an approximate 
equation connecting the amplitude of the nonplane-parallel flow component a, with 

the quantity G - G,, and the boundary sinuosity parameter q 

J (G - G,) a, - S 1 a, I2 a, + Dq = 0 (2.14) 

Introducing the notation 

y. = G - G,, Z = a,‘t/S/J, ql=qD1/S/JS f 2.15) 

we rewrite (2.14) as 

y,z - I z 12 z 4 % = 0 (2.16) 

This equation is of a very general natnre. It describes the variation of the critical 

mode amplitude close to the stability threshold in the presence of some stationary ex- 
ternal force (in the present case, the boundary distortions). An analogous equation 
was obtained previously in [2 -4’~. In the absence of boundary distortions (ql = 0) 
Eq, (2.16) has the solution 2 = 0 corresponding to a plane-parallel flow, while 
when y,, > 0 it has as well a set of solutions Z = vge@’ corresponding to the 
secondary flow. The phase cp determining the vortex center positions relative to the 
layer wails is arbitrary because of the problem’s translational symmetry. 

Boundary portion (ql # 0) lead to the removal of phase degeneracy: only 

real solutions of the cubic Es. (2.16) are left. Fig, 1 presents the graphs of 2 (y,,) 
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of the analytical and numerical calculations with 

when q = 0.02. For the motions 
corresponding to branch 1 the vort- 
ex centers are located in the wide 

sections of the layer, while for 
branches 2 and 3, in the narrow 
sections. When y,, = 0 the 
quantity Z = ~;/a; the coordin- 
ates of the point of confluence of 
branches 2 and 3 are; y,, = 3 
(ql / 2)'4 2 = - (q1 / 2)'/1. 
For large 1 y. 1 the solutions of 
(2.16) differ from the corresponding 

solutions for qI = 0 (shown in 
Fig. 1 by the dashed line) by an 
amount 0 0-h). The dash- 

dotted curve represents the solutions 
obtained by the net method in [S] 
for the same problem parameter 

values corresponding to branch I 

(the remaining branches, as is 
shown in Sect. 4, are unstable). 

The difference between the results 
G = Go is 1%. 

Let us now consider the stationary solutions of problem (2.3) -(2.4) with G close 
to Go (2k,). In this case the function UC’) in expansion (2.6) remains finite, i. e., 
the intensity of the first harmonic is of the order of q. However, function U2) 
diverges since the intensity of the second harmonic when passing through the critical 
(for the plane-parallel flow) Grashof number becomes much greater than q2. We 

set 
G - Go (2k,) = ERG (2.17) 

and we introduce the expansion 

u - IJuN = i @U@) , u”‘, = ($0, To) (2.18) 
7-1 

(2.19) 

As before, we substitute (2.1’7) -(2.19) into (2.4) and (2.3) and solve the equations 
resulting in each order of &/a. The coefficients q(n) are determined from the 
solvability conditions for the corresponding equations. It turns out that in expansion 
(2.18) the first nonzero term for the second harmonic has n = 2, while for the first 
harmonic, n = 3. In expansion (2.19) the first nonzero coefficient is 71c3). 

Omitting the details of the derivation, we present the equation for the amplitude a2 

of the second harmonic 

J (G - Go Phi)) a2 - s I a2 I” a2 + o,q2 = 0 



where f and S are the same coefficients as in Eq. (2.13). The numerical value 
of the new coefficients is D, = - 189.7 for P = 1 and k, = k, / 2. Thus, 

when passing through the threshold number Go (2k,) a rapid growth takes place in 
the intensity of the second harmonic, which now for G = Go (2k,) becomes of 
the order of $a and exceeds in magnitude the first harmonic which is of the order 
of q. One of the vortices of the second harmonic is located in the layer’s wide 
region and strengthens the fundamental mode, while the second is located in the nar- 
row region. The flow pattern described qualitatively coincides with the one obtained 
by a numerical. solution with the net method of [S& 

3, We go on to investigate the stability of the space-periodic motions constructed 
in Sect. 2. For normal perturbations 5’~“’ imposed on the stationary solution U 
we obtain the eigenvalue problem 

We examine a class of solutions of problem f3,1>, representable as 

v fit YI = 5V (z, y) PSl IV (~9 y -+ 2n /’ &J = W (K y) (3.2) 

analogously to the case of ordinary differential equations with periodic coefficients 
[IO]. Functions (3.2) represent a discrete group of translations along the $! -axis by 
distances multiples of 2n / k, in accord with the symmetries of problem (3.1). The 
real parameter k is deteimined to within an integral multiple of k,: k = K i- nk,, 
IK I < k, / 2. 

When q = 0 the solutions of system (3.1) 

v* = wo* fZ> 6% (3*3) 
describe the ~~rba~~ in the absence of boundary sinuosity. The function h, (k) 
(A, SE h &J is positive wha G < G,, vanishes at point k = k, whenG = G,, 
and is negative inside a certain interval ilk in the n~ghborho~ of k, when G > G,* 
When r] # 0 we seek the solution of problem (3.1) in the form 

v = 5 v,Tf, x = 5 h,q” (3.4) 
n=o n=o 

choosing function (3.3) and the decrement h, (k) as the zero approximation, 
Then the Fourier expansion of function V, is 

v, {a?, y) = &” i Wmn {xl e$mkQu 
m=-7% 

If the inequality 
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is fulfilled for any m- & 1, Ilt ?7 **. 
the solvability condition of the equatron 

, 
for 

the coefficient h, is determined from 
wno (3. It can be shown that the 

coefficients A,, = 0 for odd n. We can convince ourselves as well that the shift 

in the critical wave number resulting from boundary distortion is of the order of q*. 
The shift in the critical Grashof number is determined by the quantity h, (k,, G,) 
and equals 

G - Gc = 
hs (kc, Gc) 

(dh / dG)kc, G q2 
c 

Flow stabilization and destabilization correspond to the values A, > 0 and h, < 

0, respectively; when P = 1 the derivative (u% / dG)kc,Gc = - 0.0235. 
The dependence of the quantity h, (k,, GJ on k, is shown in Fig. 2 (P = 1). 

4. The cases k, = 0, k, and 

Zk,, for which the magnitude of 
A, becomes infinite, require a 
special analysis. It can be shown 

that the coefficients Xzn diverge 
in the subsequent orders when kp r~ 
kc i n and k, = 2k, I n. 

The divergence of hzn is due to 

the following reasons. The equal- 
ity Ai, (kc) = &,(k, - &J 

Fig. 2 

holds at the points k, = 2k, i n , 
which leads to a violation of con- 
dition (3.5) for k= k,. When 

considering these cases it is necessary to make some modifications in perturbation 
theory, The growth of the expansion coefficients in (3.4) as k, + 0 also is caus- 

ed by the proximity of the quantities %, (k) and h, (k -/- mk,). The equality 

G,, (nkJ = G, is achieved at points k, = kc i n , as a result of which condi- 

tion (2.9) is violated and expansion (2.6) is inapplicable for the main flow. 
At first we consider those particular cases for which condition (2.9) is fulfilled 

(k, + 0 and k, = 2kc / n), where n is odd. As k, --+ 0 (i. e., when the 

layer’s thickness changes very slowly) the perturbations localized in the layer’s wide 
part will possess damping decrements close to the decrements of the perturbations of 
a plane-parallel flow in a plane channel of halfwidth f -!- 9. ~tabi~ty appears 

when 
G = G, i (1 + W 

1. e., G - Cc s -34 G,. 
The equality b0 (kc) = ho (kc - kd holds when k. = 2&. In this case we should 

choose as the zero approximation the superposition 

Va = CX=~,~ (de 
ikCl, 

+ c?wo, -1 
-i!p 

w ’ %, -1 = ul 0,o 

with undetermined coefficients (see [ll], for instance). In the next order the solvabil- 

ity conditions for wr o and w_~ 1 yield the system of equations 

Ihrc, - Fe, = 0, Fe, - Ih,c, = 0 (4.1) 
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We do not cite the explicit expressions for coefficients F and F; when p =: 1 
and & = 1.38 we have F = -45.5 and I = 2.56. System (4.1) has two solu- 
tions c1 = =E: cl for which a0 (0, Y) is, respectively, an even and an odd func- 
tion of y; moreover 

We see that destabilization obtains for an even mode, therefore, it is stimulated for 
smaller values Of G than in an odd mode, which is consistent with the results of the 
numerical calculations in [5). It can be shown analogously that when 
6 is odd) nonzero k appear for even and odd modes. 

k, = 2kc / n 

We now consider #he case when k, z kc. Expansion (2.6) is inapplicable for 
values of G close to G,, which are of the greatest interest from the viewpoint of 
stability, and the amplitude of the nonplane-parallel component of the stationary 

motion is described by Eq. (2.14). In order to investigate the motion’s stability with 
respect to perturbations of the same periodicity as the flow itself, it is sufficient to 

repeat the derivation of Eq. (2.14). taking amplitude a as a function of the slow 

time eat (see [I] ). We obtain an equation that differs from (2.14) by a term 
1aar / al in the right hand side (I is the same coefficient as in Eqs. (4.1) ). Using 
notation (2.15). we reduce the amplitude equation to the form 

a2 f $T = y,z - 1 2 /sz + Tjl (T = ff f I) 

For ~r~rbations zewkT imposed on the stationary solution Z. satisfying (2. IS) we 
obtain the equation 

It has two solutions 

s = --H, I = zOs - yO; 2, = Ii, h = 3zos - y#) 

The first type of perturbations, the most dangerous, corresponds to a shift in the phase 
of function 2 (i. e., to a spatial displacement of the whole vortex system with un- 

changed intensity); the second type corresponds to a change in its amplitude. We can 

convince ourselves that only branch I is stable; branch 3 is unstable with respect to 
perturbations of the first type, while branch 2, to perturbations of both types. We 

take note of the fact that the first type of perturbations is connected with the complex- 
valuedness of function 2 and is absent in the problems in [2,4] for which branch 3 
is stable. The conclusion on the stability of branch I and on the instability of the re- 
maining branches is confirmed by the numerical calculations in [S]. 

We go on to investigate the stability of the stationary motions corresponding to 

branch 1 with respect to perturbations of the general form (3.2). We note that the 
net method permits us to analyze only the perturbations with wave numbers k that 

are multiples of Zn / 1, where 1 is the length of the calculated region. The 

situation when the parameters k and 2n / 1 are arbitrarily related, in particular, 

are close, cannot be handled by this method, 
Since in region G cz G, only perturbations with wave numbers close to k, (i. e., 

with small R) are of interest from the viewpoint of s~bi~ty,toinvest~ate~estabi~ty 
we apply the many-scale method in the form suggested in Cl]. Omitting the details 
of derivation, we present the final form of the equation for the amplitude function % 

depending on the slow time variable s’Q and the slow coordinate variable sy 
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When P = 1 the new coefficient’s value is R = 14.25. Using notation (2. lq, 
we obtain 

c?Z j aT = a22 / dY2 + yZ - 1 Z l”Z -J- qleiKo” 
Y=yvJfR, X,=k,-kc, y=C-Cc, T=Ji/I 

The amplitude function 

Z0 = reiKov, r3 - (v - Ko2)r - Tli = 0 

corresponds to the stationary solutions with period 2n / k, . 

For small perturbations Z,-hT imposed on solution (4.2) 

hz + d% J dY2 + yz - 2&% - z,q = 0 

whose solutions have the form 

z = aei(Ko+K)u + bei(4-Kh/ 

(4.2) 

we obtain the equation 

while the two branches of the decrement are described by the formula 

h, = K” f t2 -i- 11~ / r & f4KzK,2 + r4 

Fig. 3 Fig. 4 

The stability region for the stationary periodic motions when kG is close to k, is 

shaded in Fig.3; its boundary (line 2) is described by the equation 

y - 29 + r4 / (4K02) = 0 

As q- 0 the stability boundary splits up into two parts: y = 0 for the plane- 
parallel flow and y = 3KQ2 for the secondary flow in accordance with 11‘21 (curve 

I). The coordinates of point A are: K,3 = 2.47q1, yA = 0.76 KA2. A loss of 
stability does not take place in the interval I K, 1 < K, when passing through the 
critical (for the plane-parallel flow) Grashof number GC ) and the motion’s amplit- 

ude changes continuously. When 1 K, 1 > K, t as the Grashof number increases 
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the periodic motion at first loses stability and then becomes stable again. The neutral 
curve of the plane-parallel flow is shown as a dashed line. 

Fig.4 shows the neutral curve (the boundary is h_ = 0) for the flow with 
k,, = k, -I- K. (the instability region has been shaded). As q--+ 0 the curve 
splits into two parts: y = (K - I KO II2 for 0 < y < ~,s (the neutral curve of 
the plane-parallel flow) and y = 3K,s - K2 / 2, K = 0 when y > KOs ( the 
neutral curve of the secondary flow). The interval of unstable wave numbers is max- 
imal when y = R,s and vanishes when y = 3Ka2. In the region y > 3X0% the 
secondary motion remains stable with respect to any planar perturbations, 

Boundary distortion (ql # 0) narrows down the i~tabi~ty region of the space- 
periodic motions in accordance with Fig. 3. The analysis of stability for the case 
k, sz k, i 2 is analogous to the one above for the case ka m kc ; only the con- 

nection between q1 and ?I is changed: now .ql = 0 (q2). 

The authors thank E. M. Zhukhovitskii for suggesting the topic and for attention 
to the work, and also G. Z. Gershuni for a useful discussion. 
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